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Università di Padova, Via Marzolo 8, 35131 Padova, Italy

E-mail: anna.ceresole@to.infn.it

Abstract: We exploit some common features of black hole and domain wall solutions

of (super)gravity theories coupled to scalar fields and construct a class of stable extremal

black holes that are non-BPS, but still can be described by first-order differential equations.

These are driven by a “superpotential”, which replaces the central charge Z in the usual

black hole potential. We provide a general procedure for finding this class and deriving

the associated “superpotential”. We also identify some other cases which do not belong to

this class, but show a similar behaviour.

Keywords: Black Holes in String Theory, Supergravity Models, Black Holes.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep032007110/jhep032007110.pdf

mailto:gianguido.dallagata@pd.infn.it
mailto:anna.ceresole@to.infn.it
http://jhep.sissa.it/stdsearch


J
H
E
P
0
3
(
2
0
0
7
)
1
1
0

Contents

1. Introduction 1

2. Black holes and domain walls 3

2.1 First order equations 5

2.2 Multiple W for the same VBH 8

3. One class of VBH with multiple W 9

4. Examples 11

4.1 One-modulus case 11

4.2 STU black hole 13

5. More general solutions 15

6. Outlook 16

1. Introduction

The “no-hair theorem” states that a black hole solution is completely specified by its mass

M and charges Q (listing the angular momentum among the charges). Although there are

by now several counter examples to a general validity of this theorem, it seems to hold

true for spherically symmetric, static and asymptotically flat black holes in 4 dimensional

gravity theories coupled to Maxwell fields. The same mass and charge are used to determine

whether or not the black hole singularity is hidden by a horizon. This happens any time

the mass is bigger or equal to the charge M ≥ |Q|, providing a (sort of) BPS bound, which

is saturated by extremal (zero temperature) black holes, having M = |Q|.
The idea of an attractor mechanism [1 – 3] for supergravity black holes rests on the

above arguments, leading to scalar fields that are drawn to fixed values, where they are

functions only of masses and charges. More precisely, in Einstein-Maxwell theories coupled

to scalar fields, the near horizon geometry of extremal black holes should depend only on

the charges and not on the asymptotic values of the scalar fields.

In a supergravity, theory it is natural to expect that the charge giving the BPS bound

be a central charge of the theory Q = Z (actually, the maximal eigenvalue of the central

charges in extended supergravities [4]). The extremality condition for a given black hole is

then equivalent to the requirement that some fraction of supersymmetry be preserved: the

bound for the existence of a horizon can be identified with the BPS bound following from

the supersymmetry algebra M ≥ |Z|. This is the context where the attractor mechanism

was first introduced in [1 – 3].
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In the beginning, the main attention was devoted to supersymmetric solutions because

supersymmetry preserves the BPS bound at all values of the string coupling constant, and

this in turn allows the analysis of the black hole entropy from a string theory point of

view. However it is known that there exist also non-BPS extremal black holes, and that an

attractor behaviour can be found also for these solutions, when perturbatively stable [5, 6].

Indeed, the attractor mechanism seems to be related to the extremality rather than to the

supersymmetry property of a given solution [7, 6]. Despite some common features with

the BPS case, the non-BPS extremal black holes are not expected to share the property

of fulfilling first-order rather than second order Einstein and scalar field equations, a fea-

ture that arises as a consequence of the supersymmetry transformations on the fermions.

However, it seems natural to ask whether they satisfy only second order differential equa-

tions or if there is also some first-order formalism which identically solves the equations

of motion, and that could be related to the appearance of an attractor behaviour. If such

a formalism would exist, it should be similar to supersymmetry, though different in some

essential details. In the case of domain-wall solutions, this issue has been addressed and

solved by “fake supergravities” [8 – 11]. These are gravitational theories in d-dimensions

that, in spite of not being supersymmetric in general, present some “fake BPS equations”

for the metric and scalar fields that are of first order and originate from the vanishing

action of certain operators on spinor parameters. Indeed, fake supergravity allows to con-

struct stable domain-wall solutions satisfying first-order, attractor-like equations that are

not following from supersymmetry. Spherically symmetric, static and asymptotically flat

black hole solutions can be reduced to a one-dimensional problem of evolution in a radial

coordinate, which resembles very closely the description of domain-walls. It is therefore

interesting to see whether the analogy extends any further, also in the light of similar

investigations on developing a first order formalism for cosmological solutions [12, 13].

Building on previous knowledge of flow equations and other aspects of domain wall

supergravity solutions [14 – 16], in this note we address this problem by looking for non-

BPS extremal black holes satisfying first-order equations. Although we will not give a

general answer to the question of whether all extremal solutions derive from first-order

equations, we are going to show that there exist classes of non-BPS extremal black holes of

this type, and provide the conditions required to obtain them. Our solutions fulfill ordinary

supergravity equations of motion as well as a fake supergravity first-order formalism.

We work for convenience in N = 2 supergravity in four dimensions. In this context,

the superpotential W (φ) yielding BPS black holes is to be identified with the covariantly

holomorphic central charge Z(φ), that specifies the BPS solutions. In fact, the warp factor

and the scalar field derivatives are related to Z(φ) and its first-order derivative by the

supersymmetry conditions. In the class of extremal solutions we are going to present, it

is not Z(φ) that appears in the BPS equations, but rather we find it replaced by another

function W (φ) playing the role of a “fake superpotential” .

We start in section 2 with some general remarks and we build the set up to compare

black hole and domain wall solutions. We will find that the non-extremality parameter

c2 6= 0 is related to the presence of a positive curvature Λ > 0 on the domain-wall. Then,

in section 3 we will show how one can construct a general class of non-BPS extremal
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black holes by analyzing the symmetry properties of the supergravity potentials V (φ), and

giving evidence of their degenerate description in terms of a superpotential W (φ). This

construction was inspired by the suggestion that there may exist a canonical transformation

relating BPS and non-BPS black holes at the horizon [17].

In section 4 we show that this class is not empty by providing a simple example.

Although the conditions that select this class of solutions are quite restrictive and difficult

to match, this same construction can also be useful when the conditions are met only in

some truncated setups. For this reason, always in section 4, we provide an example of non-

BPS extremal black holes satisfying first-order differential equations in the STU model. In

section 5 we give yet another example of non-BPS extremal solutions that do not belong

to this class but show the same behaviour. In section 6, we end with some open problems.

2. Black holes and domain walls

As explained in the introduction, we consider four-dimensional Einstein-Maxwell theories

coupled to n complex scalar fields zi, with lagrangian

L = −R

2
+ gī∂µzi∂ν z̄̄ + ImNΛΣFΛ

µνFΣ µν + ReNΛΣFΛ
µν(∗FΛ)µν . (2.1)

The vector kinetic matrix NΛΣ(z, z̄) is a complex and symmetric function of the scalar fields,

Λ = 0, 1, . . . , nV . We focus on black hole solutions of this system, especially concentrating

on spherically symmetric, charged, static and asymptotically flat solutions, as they are

known to display an attractor behaviour. For these reasons, the metric Ansatz is

ds2 = −e2U(r)dt2 + e−2U(r)

[
c4 dr2

sinh4(cr)
+

c2

sinh2(cr)

(
dθ2 + sin2 θ dφ2

)]
. (2.2)

We allow the scalar fields to have a profile in the radial direction, but fix the vector fields

so that their field-strengths obey the usual quantization conditions

∫

S2

FΛ = 4πpΛ,

∫

S2

GΛ = 4πqΛ, (2.3)

where qΛ and pΛ are the electric and magnetic charges respectively.

Since we are looking at time-independent solutions that preserve spherical symmetry,

we can reduce the 4-dimensional action to a one-dimensional effective theory, by inte-

grating over Rt × S2 and discarding (infinite) constant integration factors. The resulting

effective action is given by integrating over the remaining radial coordinate S =
∫

drL the

Lagrangian [7]

L = (U ′(r))2 + gīz
′iz̄′̄ + e2UVBH − c2, (2.4)

with the prime denoting the derivative with respect to the radial coordinate (obviously one

could discard the last constant term, but we will keep it for comparison with the domain-

wall action). The first and the last term in (2.4) come from the Einstein-Hilbert action,

while the derivatives on the scalar fields arise from their kinetic term, and the black hole

effective potential VBH comes from the vector field terms and it is positive semi-definite.
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This effective action is actually quite general for any 4-dimensional gravity theory, provided

the effective potential is tuned with the theory under consideration.

The original theory (2.1) gives rise to some equations of motion that coincide with

those of the above effective theory only up to a Hamiltonian constraint:

(U ′(r))2 + gīz
′iz̄′̄ = e2UVBH + c2. (2.5)

Therefore, black holes are solutions to the equations of motion for the lagrangian (2.4)

U ′′ = e2UVBH, (2.6)

z′′i + Γi
jkz

′jz′k = e2Ugī∂̄VBH, (2.7)

complemented by the Hamiltonian constraint (2.5), where we can now identify c2 = 2ST [7]

for S the entropy and T the temperature of the black hole. Extremal black holes are those

that have c = 0, following from their zero temperature T = 0.

Let us now analyze the relation between this black hole effective action and the one

for domain-walls in 4 dimensions.

It was already pointed out in [18] that supersymmetric black holes arise from an

effective action that can be related to the one of flat supersymmetric domain-wall solutions.

It was also suggested that the negative curvature Λ < 0 of the supersymmetric domain-wall

solutions could be related to the angular momentum of supersymmetric black holes [19].

Here we want to examine this analogy for any extremal (also non-BPS) black hole as well as

for non-extremal solutions, and we want to compare them to curved domain wall solutions.

We will find that a positive curvature Λ > 0 of the domain-wall can be related to the non-

extremality parameter of the black hole, namely c2. We are led to this parallel because, as

we will see in the following, both these constants play the role of deformation parameters

in the first-order differential equations that describe the solutions.

In the case of domain-wall solutions in 4-dimensions, the metric Ansatz is

ds2 = e2U(r)ĝijdxidxj + epU(r)dr2, (2.8)

for p real, and where the 3-dimensional metric ĝ is chosen among the following three

possibilities:

dS3 ĝijdxidxj = −dt2 + e2
√

Λt(dx2
1 + dx2

2) Λ > 0,

AdS3 ĝijdxidxj = dτ2 + e−2
√
−Λτ (−dt2 + dx2) Λ < 0,

M3 ĝijdxidxj = −dt2 + dx2
1 + dx2

2, Λ = 0.

(2.9)

When the domain-wall is supported by scalar fields (we neglect charged domain-walls like

those constructed in [20, 21]), and for p = 2, the effective action follows from the lagrangian

L = e2U(r)
[
(U ′(r))2 − gīz

′iz̄′̄ − e2UVDW + Λ
]
, (2.10)

with the constraint

(U ′(r))2 − 1

3
gīz

′iz̄′̄ = −e2UVDW + Λ. (2.11)
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The corresponding equations of motion for the warp factor and the scalar fields are

U ′′ = −e2UVDW − 1

3
gīz

′iz̄′̄, (2.12)

z′′i + Γi
jkz

′jz′k = U ′z′i + e2Ugī∂̄VDW. (2.13)

2.1 First order equations

For domain-wall solutions, we know since [22, 8] that whenever the scalar potential VDW

is determined by a real superpotential W such that

VDW = −W 2 +
4

3

1

γ2
gī∂iW∂̄W, (2.14)

the solution to the equations of motion coming from (2.10) can also be derived from the

first-order “flow” equations

U ′ = ±eUγ(r)W, (2.15)

z′i = ∓eU 2

γ2
gī∂̄W, (2.16)

where

γ ≡
√

1 + e−2U
Λ

W 2
. (2.17)

It should be noted that the form of the potential (2.14) is such that the constraint (2.11)

is identically satisfied upon using (2.15) and (2.16).

At this stage, we are ready to explore the differences and similarities between the

two setups. Firstly, the lagrangian (2.10) can actually be related to the one in (2.4) by a

conformal rescaling, provided that two more crucial sign changes in the scalar kinetic term

and in the (cosmological) constant are taken into account. Clearly, these are precisely

the two ingredients that give rise to different physical systems. However, the remaining

constraints can be exactly mapped onto each other, at least for the case of constant scalar

fields, when VDW is a negative constant, while VBH is a positive one. In this case (2.11)

matches (2.5), once the identifications

VBH = −VDW = Q2 ≥ 0 and c2 = Λ ≥ 0 (2.18)

are made (thus restricting to dS or Minkowski domain-walls). As we will see briefly, this

feature implies a similar description of the two systems.

In particular, given this similarity, one can hope to reproduce also in the case of black

holes the derivation leading to first-order equations for domain-walls, at least in simple

theories where the scalar fields are constant.

As we have seen for the domain wall solutions, first order equations may be obtained

by solving the constraint (2.5), and then checking that the resulting dynamical flows also

fulfill the equations of motion. For constant scalars, this procedure together with the

identifications suggested above, gives immediately the result obtained in [23, 24], for non-

extremal black hole solutions with a single magnetic charge. Indeed, for a single magnetic
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charge Q, the black hole potential is VBH = Q2. Using the identifications W = Q and

Λ = c2, we can solve the constraint (2.5) by using

U ′ = eUγ(r)W, (2.19)

where

γ ≡
√

1 + e−2U
c2

Q2
. (2.20)

Since the scalars are constant, equation (2.13) is identically satisfied and the warp fac-

tor equation of motion (2.12) (using again the identification VBH = −VDW) is equivalent

to (2.6). As we have just stated, this equation is implied by (2.15), and we can safely argue

that (2.19) solves both the black hole equations of motion (2.6) and the constraint (2.5).

This first-order equation for the warp factor is precisely the one derived in [23, 24], ex-

pressed in our coordinate basis.

It is interesting to point out that this similarity implies a relation between the non-

extremality parameter c2, which drives the black hole away from the BPS condition, and

the positive cosmological constant Λ, which in the domain-wall case forbids supersymmetric

solutions.1 The final result is that a de Sitter curved domain wall in a gauged supergravity

theory and a non extremal black hole in a Maxwell + Einstein theory with a single charge

from an abelian vector field and no scalar fields (for instance pure supergravity with a

non-trivial graviphoton charge) share the same effective action.

As we have noted before, it is not to be expected that the actions describing the

domain-wall and black hole systems can be generically mapped exactly one on the other.

The difference in the two systems shows up when trying to extend the first-order formalism

just discussed to the case of non-constant scalar fields. While a warp-factor equation like

the one suggested in (2.19) may solve the related equation of motion, there is no simple

way to find a first-order equation with a similar property also for the scalar fields. The only

instance where this seems to be possible is the case of extremal black holes, where c = 0.

For vanishing extremality parameter, the constraint (2.5) becomes a relation between the

potential, the derivatives of the scalar fields and the warp factor. Therefore, it becomes

easy to see that if the constraint (2.5) can be solved by a real “superpotential” function

W (z, z̄) such that

U ′ = ±eUW, (2.21)

z′i = ±2eUgī∂̄W, (2.22)

then the potential VBH becomes

VBH = W 2 + 4gī∂iW∂̄W , (2.23)

1It is known that there are exceptions to this rule, when the total metric describes four-dimensional

Minkowski or Anti de Sitter space. In this case, the de Sitter domain walls can be foliations of supersym-

metric spaces, such that the supersymmetry parameters are not preserved on each foil.
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and the equations of motion are identically satisfied. This can also be seen directly by

rewriting the effective action (2.4) in the usual BPS form

S =

∫
dr

[(
U ′ ± eUW

)2
+

∣∣zi′ ± 2eUgī∂̄W
∣∣2 ∓ 2

d

dr

(
eUW

)]
. (2.24)

The parallelism with the domain-wall solutions is self-manifest. The c = 0 constraint

gives a situation similar to that of flat domain-walls. The first-order equations (2.15)

and (2.16) as well as the potential (2.14) easily reduce to expressions which closely resemble

the black hole ones (2.21)–(2.22) and (2.23), with an appropriate sign change in the scalar

equation, reflecting the different relative sign (and factor) in the scalar potential. We stress

once more that we need the solution to be extremal in order to solve the Hamiltonian

constraint and therefore to implement first-order equations of motion when the scalars are

not constant. The constraint for non-extremal black holes is shifted by the constant c and

it cannot be put easily in the appropriate first-order form that also satisfies the equations

of motion. We also remark that nothing has been related to supersymmetry so far. On

the other hand, it is clear that a potential of the form (2.23) is not common to any gravity

theory.

In supersymmetric theories there is a natural superpotential function, which is defined

by the central charge Z. For instance, in N = 2 supergravity the effective potential can

be written in terms of Z as

VBH = |Z|2 + gīDiZD̄Z, (2.25)

where Di = ∂i + 1
2∂iK are Kähler covariant derivatives. This potential can be compared

to (2.23) by identifying W = |Z| in which case (2.25) becomes

VBH = |Z|2 + 4gī∂i|Z|∂̄|Z|, (2.26)

where we have used that the central charge is a covariantly holomorphic function of the

scalar fields, i.e. satisfying
(
∂̄ı̄ − 1

2∂ı̄K
)
Z = 0, which implies that Z = eK(zi,z̄̄)/2f(zi).

Extrema of this superpotential function, with DiZ = 0 and Z 6= 0 (which therefore are

in one to one correspondence with ∂i|Z| = 0), give rise to supersymmetric black holes,

and the first-order equations (2.21)–(2.22) are nothing but the conditions following from

the (vanishing of the) supersymmetry variations of the supergravity fermi fields2 [1, 7].

However, we are interested in those theories that may not be supersymmetric, or in those

supersymmetric theories where the constraint (2.5) admits multiple solutions. This may be

due to a potential (2.23) that does not univocally identify a superpotential W , but rather

may be equivalently rewritten in terms of different superpotentials W , only one of which

correspond to the true central charge Z. Then, the first-order equations do not imply

2Often in the literature the BPS equation for the scalar fields contains the covariant derivative on Z

instead of the simple derivative on the absolute value |Z|. The two equations are actually equivalent upon

using the condition on the phase of the central charge following from the supersymmetry condition coming

from the gravitino transformation in the radial direction δψA
r = 0. This is also clear from the BPS form of

the action (2.24), which, for W = |Z|, can be rewritten in the form given in [1, 7] using special geometry.
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anymore preserved supersymmetries, as they differ from the Killing spinor equation and

susy rules. At most, we can talk about pseudo or “fake supersymmetries”, and preservation

of the form of the potential will still grant the stability of the solution, if non singular.

2.2 Multiple W for the same VBH

In view of the above discussion, we now turn to explore the conditions for the con-

straint (2.5) to be solved by a “fake” black hole superpotential W , which is not simply

proportional to the central charge Z. When such a real function W (z, z̄) exists, its critical

points, ∂iW = 0, give rise to stable non-BPS black holes.

First of all, it must be clear that quite generally there is no unique solution to the

effective potential V in terms of a superpotential W that preserves the “stability” form [14]

appearing for instance in (2.14). That expression should rather be interpreted as a partial

differential equation defining W for a given V . In the case of domain walls and just one

scalar field, the issue has been raised in [25, 26], showing that it is possible to have families

of solutions. Moreover, also the fake supergravities are an indirect manifestation of this

ambiguity. For our purposes, it is useful to consider the rescaled potential V(U, z, z̄) =

e2UV (z, z̄). Then, V can be written as the sum of squares of derivatives of W(U, z, z̄) ≡
eUW (z, z̄) with respect to a set of effective coordinates that include also the warp-factor

xA = {U, zi, z̄ ı̄}:
V(xA) = gAB∂AW(x)∂BW(x), (2.27)

where gUU = 1, gUi = 0 and gAB is positive definite. This formula shows how it is possible to

have different superpotentials, or better gradients of the superpotential ∂AW(x) generating

the same V(x).

The constraint (2.27) says that we will get the same V(x) for all the vectors ∂AW(x)

having the same norm. Therefore, the constraint allows for a field dependent rotation,

provided that the rotated vector be once more a gradient (at least locally). More in detail,

given the same V, we can write it in terms of two different superpotentials W and W̃(x)

provided

∂AW(x) = RA
B(z, z̄)∂B W̃(x), (2.28)

and R(z, z̄) is a field-dependent rotation matrix RT gR = g, which does not contain the

warp factor, so that W̃ = eUW̃ (z, z̄) In addition to the above contraints, this rotation matrix

fulfills a differential condition:

d(dxARA
B∂B W̃) = 0 ⇔ ∂[A

(
RB]

C∂C W̃
)

= 0. (2.29)

Although we have not found a general R matrix to solve this condition, we will see in the

next section that we can indirectly construct classes of solutions by using the symplectic

structure of the 4-dimensional black hole potential.

Before proceeding, it is useful to pause and comment on some properties of the multiple

choice of superpotentials to the same potential. The critical points of VBH with a finite

area of the horizon necessarily have ∂UW 6= 0, but ∂iW = 0. This means that if we have

two different superpotentials W for the same potential VBH, the generic behaviour of the

– 8 –
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transformation mapping them one into the other is such that critical points of one are

mapped onto ordinary points of the other, with ∂iW̃ 6= 0. Only critical points with zero

value of the superpotential W = 0 are common to all possible solutions of the potential

constraint, but we exclude them because we want a non-trivial black hole horizon and

this is related to VBH = W 2 at the critical point. This further implies that when we

solve the potential VBH for two different functions with only one of the two being the

superpotential appearing in the supersymmetry transformations (i.e. the central charge Z
for N = 2), the critical points of the other “fake superpotential” will describe horizons of

non-supersymmetric black holes.

3. One class of VBH with multiple W

From now on, we focus on N = 2 supergravity, where the properties of special geometry

allow us to specify a simple condition for finding multiple (fake) superpotentials describing

the same black hole potential.

For this theory, the black hole potential is given by the invariant [27]

VBH = I1 = QTMQ, (3.1)

where Q = {pΛ, qΛ} is the Sp(2nV + 2, Z) symplectic vector of charges and M = (AB
CD) is

the symplectic matrix defined by the entries

A = −DT = ReN (ImN )−1,

C = (ImN )−1,

B = −ImN − ReN (ImN )−1ReN .

(3.2)

This can be further rewritten through another symplectic matrix

M =

(
D C

B A

)
(3.3)

via the relation

M = IM, I =

(
0 −I

I 0

)
, (3.4)

with M2 = −I. We remind that the matrix NΛΣ(z, z̄), whose real and imaginary parts

appear in the previous equation, defines the metric of the vector fields as in (2.1).

As mentioned in the previous section, for N = 2 supergravity this potential can always

be written in terms of a superpotential, which is given by the central charge

Z = eK/2
(
qΛXΛ − pΛFΛ

)
. (3.5)

This is a symplectic invariant of the charge vector Q = {pΛ, qΛ} and the covariantly holo-

morphic sections V = eK/2{XΛ, FΛ} ≡ {LΛ,MΛ} (with MΛ = NΛΣLΣ) describing the

vector multiplet scalar manifold geometry:

Z = QTIV = LΛqΛ − MΛpΛ. (3.6)

– 9 –
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The black hole potential follows from (2.25)

VBH = I1 = |Z|2 + gīDiZD̄Z, (3.7)

and we have seen that this has a natural superpotential defined by W = |Z|.
We first look at (3.4) and see that, given a potential defined by I1, we still have the

freedom to perform transformations on the charge vector Q → SQ without changing its

value. Assuming S is also a symplectic matrix, this happens when

I1 = QTMQ = QT STMSQ ⇒ STMS = M. (3.8)

This last condition becomes

STIMS = IM, (3.9)

and using the properties of symplectic matrices (and hence STIS = I ⇒ STI = IS−1) we

get

STIMS = IS−1MS = IM (3.10)

and finally

[S,M ] = 0. (3.11)

However, by the comparison of the two equivalent definitions (3.1) and (3.7) we deduce

that only if S is constant we can define a new “fake superpotential”

W = QT STIV (3.12)

(with W = |W|) giving rise to the same potential as Z. Only in this case the derivatives

on the superpotential will go through the matrix S and therefore the charges transformed

by the matrix S will factorize, just like in the ordinary case where the superpotential is

defined by the central charge, reconstructing M.

Summing up, anytime we find a constant symplectic matrix S that commutes with M

defined above, we find a new “fake superpotential” whose critical points (if any) describe

non-supersymmetric black holes.

Some comments are in order. Firstly, in the generic case the field dependent matrix M

spans all possible symplectic matrices in the group of duality transformations and therefore

there will be no way to find constant matrices commuting with it. However, we will see that

there is at least one simple instance where such matrix exists. Secondly, quite often one can

consistently truncate the theory to a subset of the scalar fields, so that the constraint (3.11)

allows for solutions. We will see this again in the next section for the case of STU black

holes. Finally, another strong constraint on the existence of such solutions comes from

an observation in [7], that the second derivatives of a potential of the form (2.25) at the

critical point are proportional to the metric (and hence positive definite). This implies

that matrices satisfying (3.11) can be found only if the Hessian of the black hole potential

is positive-definite and proportional to the scalar σ-model metric also at the critical points

describing the non-BPS black holes. Although there are examples where this happens,

this cannot be a general feature of all non-BPS black holes. This does not exclude that
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there may be alternative ways of obtaining “fake superpotentials” describing the same

potential. The main requirement then would be that these “fake superpotentials” must

not be covariantly holomorphic functions of the scalar fields. In this case the argument

in [7] fails and therefore there is no constraint on the Hessian of the potential at the non-

BPS critical points. This is precisely the case where one can find a field dependent R

satisfying (2.29), but not a constant S satisfying (3.11). We will see an example of this

sort in section 5.

4. Examples

Let us now turn to examples of models where the black hole effective potential has multiple

descriptions, by a superpotential Z and a “fake superpotential” W .

4.1 One-modulus case

The first example is given by the SU(1, 1)/U(1) model with just one modulus, generated

by the prepotential

F = −iX0X1. (4.1)

In special geometry, the Kähler potential is defined in terms of the sections {XΛ, FΛ}, with

FΛ = ∂ΛF (X), by

K = − log[i(X̄ΛFΛ − XΛF̄Λ)], (4.2)

and upon inserting (4.1) it reads K = − log 2(z + z̄).

Using normal coordinates z = X1/X0, in the gauge X0 = 1 and for generic electric qΛ

and magnetic pΛ charges, this generates a central charge:

Z =
q0 + ip1 + (q1 + ip0)z√

2(z + z̄)
. (4.3)

The black hole potential VBH is derived by inserting this expression in (2.25):

VBH =
(p1)2 − iq1(z − z̄)p1 + q0

2 + ip0q0(z − z̄) +
(
(p0)2 + (q1)

2
)
zz̄

z + z̄
. (4.4)

Black hole solutions are then found by looking for solutions interpolating between flat space

at infinity and AdS2 × S2 at the horizons defined by the critical points of VBH.

Critical points of VBH are found for

z± =
±(p0p1 + q0q1) + i(p0q0 − p1q1)

(p0)2 + (q1)2
, (4.5)

and since Rez > 0, they lie inside the moduli space for (p0p1 + q0q1) > 0 when z+ is chosen

in (4.5), and (p0p1 + q0q1) < 0 for z−.

This model has both supersymmetric black holes as well as non-supersymmetric ones.

More precisely, z+ (4.5) gives the supersymmetric vacuum, which satisfies DiZ = 0, with

Z 6= 0, (hence ∂i|Z| = 0) and thus it is a fixed point of (4.3) .
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The negative sign z− gives the non-BPS black hole, for which DiZ 6= 0. The Hessian

at these points is always positive as there are 2 identical positive eigenvalues

± 1

p0p1 + q0q1
{((p0)2 + (q1)

2)2, ((p0)2 + (q1)
2)2}. (4.6)

A simple inspection of the above formulae shows that the two type of black holes are

related by a change of sign in the electric or magnetic charges. Let us now argue that

this is precisely the transformation that can be achieved by acting on the charges with

a matrix S, satisfying (3.11), to map the superpotential into the “fake superpotential”

describing the non supersymmetric critical point and giving the first-order equations for

the non supersymmetric black hole. As explained in the previous section, the black hole

potential can be deduced from the (3.1) formula, by using the symplectic matrix (3.3),

which reads

M =




y
x 0 − 1

x 0

0 − y
x 0 − (x)2+(y)2

x

(x)2+(y)2

x 0 − y
x 0

0 1
x 0 y

x




(4.7)

where we have used the notation z ≡ x + iy.

We now look for a general constant symplectic matrix commuting with (4.7). Given

the simple structure of M , we can see that

S = − cos[θ]

(
σ3 0

0 σ3

)
+ sin[θ]

(
0 −iσ2

iσ2 0

)
(4.8)

is appropriate for this purpose. Applying this matrix to the charges we get a new complex

“fake superpotential”

W = eiθ−q0 + ip1 + (q1 − ip0)z√
2(z + z̄)

(4.9)

that indeed differs from (4.3), but gives rise to the same potential VBH. It is also quite

simple to check that the critical point of this new “fake superpotential” is the non-BPS

black hole, namely (4.5) with the minus sign. Also, for θ = 0, this is proving what we were

expecting: the BPS and non-BPS black hole are related by a sign change in the charges

appearing in the definition of the superpotential.

From the general discussion of section 2, we also know that the superpotentials giving

the first-order equations describing the two types of black holes, namely W = eU |Z|, for

the supersymmetric one, and W̃ = eU |W|, for the non supersymmetric one, must be related

by (2.28). This is indeed what happens for a special choice of the matrix R, which is such

that the norm of the superpotential and the norm of its derivatives with respect to the

moduli fields are exchanged. This is a clear invariance of the black hole potential, which

is given by the sum of the two, but it cannot always be realized with a rotation matrix

satisfying (2.29) with the exception of the case of a single real scalar. The general way to
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W

Figure 1: Plots of the sections of W and |Z| at Im z = 0, for unit charges. Where the central

charge shows a minimum, the “fake superpotentials” crosses zero. Changing the signs of the q0 and

p0 charges exchanges the two pictures.

construct a matrix that gives the desired result (exchange of W 2 with |∂W |2) is to take

R =

(
0 uT

u A

)
, (4.10)

where (for n scalars) the n-dimensional vector u is defined as the unit-norm derivative of

the original superpotential with respect to the scalar fields

~u =
~∂ W

|~∂ W|
(4.11)

and the n×n matrix A acting on the scalar field directions is constructed as A = R−RuuT ,

for R a rotation matrix. The relation (2.28) can be explicitly verified by applying the above

expressions

∂W̃ =

(
|~∂ W|
W ~u

)
= R ∂W = R

(
W

|~∂ W| ~u

)
. (4.12)

For the simple case at hand, one can also check that the new superpotential is indeed

the norm of the derivative of the supersymmetric one |W| = |∂|Z|| and that the con-

straint (2.29) is identically satisfied.

4.2 STU black hole

The STU model can be constructed starting from a cubic prepotential

F =
X1X2X3

X0
. (4.13)

Using special coordinates, the Kähler potential of the scalar σ-model reads

K = − log
(
−i(z1 − z̄1)(z2 − z̄2)(z3 − z̄3)

)
(4.14)

and the central charge follows in the usual way from Z = eK/2(qΛXΛ − pΛFΛ). Let us

focus on a choice of charges admitting both BPS and non-BPS black holes. This is the
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case when we have only one magnetic charge p0 and 3 electric charges qi, i = 1, 2, 3. For

this choice of charges, the central charge reads

Z = eK/2
(
qiz

i + p0z1z2z3
)
. (4.15)

The BPS and non-BPS attractor points for the moduli are then given by

z1 = −i

√
∓ q2q3

p0q1
, z2 = −i

√
∓ q3q1

p0q2
, z3 = −i

√
∓ q1q2

p0q3
, (4.16)

where the minus sign is for the BPS black hole (p0q1q2q3 < 0 in that case) and the plus sign

is for the non supersymmetric ones (p0q1q2q3 > 0). These critical points are both stable,

as shown in [28]. The non-BPS critical point, however, does not have a Hessian matrix

for the potential which is positive definite, but there are flat directions in the axion sector.

It is clear already from this fact that we should not expect to find a constant S giving

rise to a new “fake superpotential” generating this critical point. Indeed, by constructing

explicitly M for this example we do not find any constant S commuting with it. If, on the

other hand, we truncate the theory setting to zero the axion fields Rezi, we can once more

prove that there is a “fake superpotential” describing the non-BPS black hole.

First of all, we can prove that this truncation is consistent, as the axion equations

of motion are identically satisfied by setting them to zero. We are therefore left with

an effective potential depending only on Imzi = yi < 0, and this latter follows from the

truncated central charge

Z =
1√
8

[
−p0

√
−y1y2y3 + q1

√
− y1

y2y3
+ q2

√
− y2

y3y1
+ q3

√
− y3

y1y2

]
, (4.17)

whose critical point is (4.16), with the minus sign choice. The difference however is that

now the matrix M simplifies a lot

M =




0 0 0 0 1
y1y2y3 0 0 0

0 0 0 0 0 y1

y2y3 0 0

0 0 0 0 0 0 y2

y3y1 0

0 0 0 0 0 0 0 y3

y1y2

−y1y2y3 0 0 0 0 0 0 0

0 −y2y3

y1 0 0 0 0 0 0

0 0 −y3y1

y2 0 0 0 0 0

0 0 0 −y1y2

y3 0 0 0 0




(4.18)

and therefore we can find a constant S commuting with it:

S = diag{a, b, c, d, a, b, c, d}, (4.19)

where a, b, c, d = ±1. For instance, choosing a = −1, b = c = d = 1, we get the “fake

superpotential”

W =
1√
8

[
p0

√
−y1y2y3 + q1

√
− y1

y2y3
+ q2

√
− y2

y3y1
+ q3

√
− y3

y1y2

]
, (4.20)
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which generates the same potential as (4.17), but the only critical point of W is the non-

BPS black hole with the plus sign in (4.16). Other choices of the signs in the matrix S

give “fake superpotentials” that do not admit critical points in the allowed regions of the

moduli space. Once more, the relation between the two superpotentials is a sign change

in the charges, but we will see in the next section that this is not a necessary condition in

order to find multiple superpotential solutions to the potential constraint.

5. More general solutions

In this last section we consider another simple model with a single modulus. However, we

choose a model that does not allow for solutions of (3.11), but still admits multiple black

hole vacua. We will be able to identify also in this case multiple superpotentials driving

the first-order equations yielding BPS and non-BPS black holes.

A model with these properties is the one with a cubic prepotential like the STU model,

but with a single modulus and thus only two sections XΛ:

F =
(X1)3

X0
. (5.1)

Let us consider the case of black holes generated by the electric charge q1 and the magnetic

one p0:

Z =
zq1 + p0z3

√
−i(z − z̄)3

. (5.2)

Critical points of the central charge lead to supersymmetric black holes at

z = −i

√
− q1

3p0
, (5.3)

provided p0q1 < 0. Analyzing the full black hole potential we can also find a non-

supersymmetric critical point (and hence a non-BPS black hole horizon) at

z = −i

√
q1

3p0
, (5.4)

when p0q1 > 0. The Hessian at these points is always positive, but with different eigen-

values. This already implies that we cannot obtain a “fake superpotential” by acting on

the charges in Z by a constant S transformation. This can be explicitly verified by com-

puting M and checking that there are no constant matrices commuting with it. Still, we

can find a “fake superpotential” generating (5.4) by making a field-dependent transforma-

tion as suggested in (2.28). Following these considerations, the new superpotential cannot

be covariantly holomorphic and this is indeed the case as one can see from the explicit

expression, which reads:

W =

∣∣∣∣∣
zq1 + p0z2z̄√
−i(z − z̄)3

∣∣∣∣∣ . (5.5)

This superpotential clearly differs from (5.2), but gives rise to the same potential VBH

through (2.23). This new “fake superpotential” has a single critical point, which corre-

sponds to the horizon of the non-BPS black hole, namely (5.4).
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Finally, it is interesting to note that formally this same superpotential can be obtained

by applying a field-dependent S to the charges defining (5.2). This same S, once the axion

is fixed at the critical point, reduces to a constant matrix that commutes with M in the

same truncated setup, just like in the STU model.

6. Outlook

One of the main reasons why it is interesting that supersymmetric black hole solutions

are described by first order equations is related to the possible existence of an attractor

mechanism for the scalar fields. Henceforth, it is very appropriate to address this question

in the class of examples we have just presented. The non-BPS black holes we have found

in section 3 are for sure attractor points of the potential, as it is clear from the comments

on the positivity of the Hessian of the scalar potential. However, there is more that we

can say, and following the procedure used for the supersymmetric attractors in [2], we can

derive the attractor equations in an algebraic form.

In [2], starting from the BPS extremality condition DiZ = 0 and using special geometry

relations, one obtains a purely algebraic condition specifying the critical points

Q = Im
(
ZV

)
(6.1)

The same argument goes through in our case by replacing the central charge with the

“superpotential” W and the charges with those transformed by the action of the matrix S.

The final outcome is that for these examples the non-BPS critical points can be obtained

by solving the algebraic equation

SQ = Im
(
WV

)
. (6.2)

In order to derive this result we had to use the holomorphicity properties of this “superpo-

tential” and therefore we can not get a similar result in the more general case of a real W

generated by some R transformation which is not related to the class just presented here.

Both these classes will be described by the non-BPS attractor equations of [29], though,

and it would be desirable to reach a deeper understanding of the relation between the two

formulations.

Although it is clear that our discussion has an easy extension to black hole solutions

with a higher number of supersymmetries, we have worked for convenience in N = 2

supergravity in four dimensions. In this context, the superpotential yielding BPS black

holes W (φ) is to be identified with the covariantly holomorphic central charge Z(φ), that

specifies the BPS solutions. In fact, the warp factor and the scalar field derivatives are

related to Z(φ) and its first-order derivative by the supersymmetry conditions. We have

been able to generate new classes of extremal black hole solutions where the potential

is not expressed in terms of the central charge Z(φ), but rather in terms of the “fake”

superpotential W (φ). It would be interesting to understand the physical meaning of this

“superpotential” as some generalized (central) charge of the theory. This is especially true

in virtue of the connection between the “superpotential” and the area of the non-BPS black
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hole horizon, that could be suggestive of some relation between this W (φ) and the entropy

functional of [30].

It is important to understand whether our class of solutions, or others that can be

generated by a similar mechanism, are just special ones inside all non-BPS extremal black

holes, or if there is a general way to argue for the same behaviour for all other extremal

solutions.

Furthermore, the intriguing connection between canonical transformations relating

BPS and non-BPS black holes at the horizon and the S matrix transformation relating

the central charge and the fake superpotentials certainly worths future investigations.

Finally, it would be very interesting to see whether the first order equations we provide

in this note can be extracted from some pseudo supersymmetry transformation of a fully

fledged fake supergravity, and we hope to report on it somewhere else.
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